Silicon chips detect intracellular pressure changes in living cells.

نویسندگان

  • Rodrigo Gómez-Martínez
  • Alberto M Hernández-Pinto
  • Marta Duch
  • Patricia Vázquez
  • Kirill Zinoviev
  • Enrique J de la Rosa
  • Jaume Esteve
  • Teresa Suárez
  • José A Plaza
چکیده

The ability to measure pressure changes inside different components of a living cell is important, because it offers an alternative way to study fundamental processes that involve cell deformation. Most current techniques such as pipette aspiration, optical interferometry or external pressure probes use either indirect measurement methods or approaches that can damage the cell membrane. Here we show that a silicon chip small enough to be internalized into a living cell can be used to detect pressure changes inside the cell. The chip, which consists of two membranes separated by a vacuum gap to form a Fabry-Pérot resonator, detects pressure changes that can be quantified from the intensity of the reflected light. Using this chip, we show that extracellular hydrostatic pressure is transmitted into HeLa cells and that these cells can endure hypo-osmotic stress without significantly increasing their intracellular hydrostatic pressure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Suspended Planar-Array Chips for Molecular Multiplexing at the Microscale.

A novel suspended planar-array chips technology is described, which effectively allows molecular multiplexing using a single suspended chip to analyze extraordinarily small volumes. The suspended chips are fabricated by combining silicon-based technology and polymer-pen lithography, obtaining increased molecular pattern flexibility, and improving miniaturization and parallel production. The chi...

متن کامل

Intracellular silicon chips in living cells.

Recent advances in microtechnology and nanotechnology have enabled microelectromechanical systems (MEMS) and nanoparticles to be used as interactive devices in cell biology. Even though silicon MEMS, based on photolithographic processes, exhibit high performance and versatility their use has been limited to extracellular applications, that is, cell biomolecular recognition, manipulation, mechan...

متن کامل

Silicon-nanowire based attachment of silicon chips for mouse embryo labelling.

The adhesion of small silicon chips to cells has many potential applications as direct interconnection of the cells to the external world can be accomplished. Hence, although some typical applications of silicon nanowires integrated into microsystems are focused on achieving a cell-on-a-chip strategy, we are interested in obtaining chip-on-a-cell systems. This paper reports the design, technolo...

متن کامل

Imaging neuronal seal resistance on silicon chip using fluorescent voltage-sensitive dye.

The electrical sheet resistance between living cells grown on planar electronic contacts of semiconductors or metals is a crucial parameter for bioelectronic devices. It determines the strength of electrical signal transduction from cells to chips and from chips to cells. We measured the sheet resistance by applying AC voltage to oxidized silicon chips and by imaging the voltage change across t...

متن کامل

P-28: Hydrostatic Pressure Induced Cell Deathin Cumulus Cells and Improved In vitro Maturationof Oocytes from Preovulatory Follicles

Background: Cryopreservation of ovaries is an important technique in assisted reproduction technology. Physical forces like hydrostatic pressure have a pivotal role in reproduction systems. Due to changes in intrafollicular pressure during ovulatory process, this study designed to examine the effects of hydrostatic pressure on oocyte maturation and cell death in cumulus cells from cryopreserved...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature nanotechnology

دوره 8 7  شماره 

صفحات  -

تاریخ انتشار 2013